Regulation of rat hepatic 3beta-hydroxysterol delta7-reductase: substrate specificity, competitive and non-competitive inhibition, and phosphorylation/dephosphorylation.

نویسندگان

  • S Shefer
  • G Salen
  • A Honda
  • A K Batta
  • L B Nguyen
  • G S Tint
  • Y A Ioannou
  • R Desnick
چکیده

The mechanism for the catalytic reduction of the double bond at C-7, 8 in 7-dehydrocholesterol by 3beta-hydroxysterol Delta7-reductase was investigated by testing structurally related sterols as substrates and potential inhibitors. The hepatic smooth endoplasmic reticulum was identified as the site of enzyme activity. All putative substrates contained 27 carbons, but differed from 7-dehydrocholesterol by the addition of either an ethyl substituent at C-24 (7-dehydrositosterol), a double bond at C-22 with a methyl substituent at C-24 (ergosterol), epimerization of the hydroxyl from the 3beta- to 3alpha-configuration (7-dehydroepicholesterol), or a saturated double bond at C-5,6 (lathosterol). Two non-steroidal compounds that inhibit 3beta-hydroxysterol Delta7-reductase in vivo (AY 9944 and BM 15.766) were also tested. Ergosterol, 7-dehydrositosterol, and 7-dehydroepicholesterol were reduced at C-7, 8 to form brassicasterol, sitosterol, and epicholesterol, respectively, but 75% less efficiently than 7-dehydrocholesterol. Increasing concentrations of these sterols competitively inhibited 3beta-hydroxysterol Delta7-reductase activity. The double bond at C-7,8 in lathosterol was not reduced. AY 9944 and BM 15.766 inhibited 3beta-hydroxysterol Delta7-reductase activity non-competitively. 3beta-Hydroxysterol-Delta7-reductase activity declined after microsomes were exposed to alkaline phosphatase, and enzyme activity was increased by phosphorylation with Mg2+, and ATP. These results demonstrate that the reduction of the double bond at C-7,8 requires binding of the enzyme protein with the B-ring of the sterol substrate that contains a double bond at C-5,6. The reaction is hindered by substituents located on the apolar side-chain and epimerization of the hydroxyl group in ring A to a 3alpha-configuration. 3beta-Hydroxysterol Delta7-reductase exists in two forms: an active phosphorylated form and an inactive dephosphorylated form.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Sialyl trnsferase activity and effect of Phosphorylation and dephosphorylation Mechanisms

Halakhor S1, Qujeq D2, Shikhpour R3 1. Instructor, Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 2. Associate professor, Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 3. GP, Babol, Iran Abstract Background: Previous reports show that phosphorylation anddepho...

متن کامل

Microsomal antiestrogen-binding site ligands induce growth control and differentiation of human breast cancer cells through the modulation of cholesterol metabolism.

The microsomal antiestrogen-binding site (AEBS) is a high-affinity membranous binding site for the antitumor drug tamoxifen that selectively binds diphenylmethane derivatives of tamoxifen such as PBPE and mediates their antiproliferative properties. The AEBS is a hetero-oligomeric complex consisting of 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase. High-af...

متن کامل

Bile acid synthesis in the Smith-Lemli-Opitz syndrome: effects of dehydrocholesterols on cholesterol 7alpha-hydroxylase and 27-hydroxylase activities in rat liver.

The Smith-Lemli-Opitz syndrome (SLOS) is a congenital birth defect syndrome caused by a deficiency of 3beta-hydroxysterol Delta(7)-reductase, the final enzyme in the cholesterol biosynthetic pathway. The patients have reduced plasma and tissue cholesterol concentrations with the accumulation of 7-dehydrocholesterol and 8-dehydrocholesterol. Bile acid synthesis is reduced and unnatural cholenoic...

متن کامل

Limb malformations of rat fetuses exposed to a distal inhibitor of cholesterol biosynthesis.

Triparanol, an inhibitor of desmosterol Delta24 reductase, produces a high rate of limb malformations in rat fetuses exposed at gestational day 10 (gd 10) to a single oral dose (150-200 mg/kg) given to the pregnant dam. AY9944, another efficient distal inhibitor of cholesterol biosynthesis that blocks dehydrocholesterol Delta7 reductase, produces a similar degree of cholesterol depletion but fe...

متن کامل

Lack of Species Specificity of Antibody to an Enzyme

Antibodies to crystalline bovine hepatic L-glutamic dehydrogenase were induced in rabbits. These antibodies inhibited the bovine glutamic dehydrogenase used as antigen, and also inhibited glutamic dehydrogenases from rat, rabbit, human, pigeon, and frog livers, as well as frog renal and muscle glutamic dehydrogenase. The antibody did not inhibit yeast glutamic dehydrogenase which differs from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 39 12  شماره 

صفحات  -

تاریخ انتشار 1998